Project 1

Joe Bernard

September 6-19, 2021

Unit 1.1

For each of the following functions, evaluate: $f(2), f(-1), f(0), f(1)$, and $f(2)$
21. $f(x)=4-2 x$

\mathbf{x}	-2	-1	0	1	2
$\mathbf{f}(\mathbf{x})$	8	6	4	2	0

22. $f(x)=8-3 x$

\mathbf{x}	-2	-1	0	1	2
$\mathbf{f}(\mathbf{x})$	14	11	8	5	2

33. $f(x)=2^{x}$

\mathbf{x}	-2	-1	0	1	2
$\mathbf{f}(\mathbf{x})$	$1 / 4$	$1 / 2$	1	2	4

Reflection: This section of problems was relatively easy for me as I remember doing this in algebra. I verified that that the function works by ensuring that an " x " value does not equal more than one " y " value.
35. Suppose $f(x)=x^{2}+8 x-4$. Compute the following:
a. $f(-1)+f(1)$ b. $f(-1)-f(1)$
$f(-1)=(-1)^{2}+8(-1)-4=-11$
$f(1)=(1)^{2}+8(1)-4=5$
$f(-1)+f(1)=-6$
$f(-1)-f(1)=-16$
Reflection: This problem was a review from my previous PreCalc experience. one thing that threw me off a bit were the negative numbers and squaring the first term on both.
43. Write the equation of the circle centered at $(3,9)$ with radius 6 .
$(x-3)^{2}+(y+9)^{2}=36$
44. Write the equation of the circle centered at $(9,8)$ with radius 11.
$(x-9)^{2}+(y+8)^{2}=121$
Reflection: Both of these problems were scaring me with the phrase "write the equation". Once I knew I needed the Pythagorean theorem, that made it a bit easier. It also helped to draw a diagram of the points.

0.1 Unit 1.2

Find the domain of each function
14. $f(x)=\frac{3 x+1}{4 x+2}$
$f(1)=\frac{2}{3}$
Domain is $(-\infty, .-5) U(.5, \infty)$
Reflection: This question was not too difficult for me once I remembered what formula I needed to use.

Given each function, evaluate: $f(-1,0,2,4)$
19. $f(x)= \begin{cases}7 x+3 & \text { if } x<0 \\ 7 x+6 & \text { if } x \geq 0\end{cases}$
$f(-1)=7(-1)+3=-4$
$f(0)=7(0)+6=6$
$f(2)=7(2)+6=20$
$f(4)=7(4)+6=34$
Reflection: I found this question relatively easy. It was just a bit tedious to impute into LaTeX due to all the different yet familiar equations.

31: Sketch a graph for each piecewise function.
$f(x)= \begin{cases}x^{2} & \text { if } x<0 \\ x+2 & \text { if } x \geq 0\end{cases}$
insert graph from mathmatica
34.
$f(x)= \begin{cases}x+1 & \text { if } x<1 \\ x^{3} & \text { if } x \geq 1\end{cases}$
insert mathmatica graph

0.2 Unit 1.3

Find the average rate of change on the interval specified
5. $f(x)=x^{2}$ on $[1,5] f(1)=1$
points:(1, 1)
$f(5)=25$
points: $(5,25)$
Average rate of change: $\frac{1-25}{1-5}=\frac{-24}{-4}=6$
Average rate of change $=6$
7. $g(x)=3 x^{3}-1$ on $[-3,3]$
$g(-3)=3(-3)^{3}-1=-82$
points: $(-3,-82)$
$g(3)=3(3)^{3}-1=80$
Points $(3,80)$
Average rate of change: $\frac{-82-80}{-3-3}=\frac{-162}{-6}=27$
Average rate of change $=27$
Reflection: I found both of these questions relatively difficult. Most of the difficulty came from my inability to recognize the formula that I needed to use. Once I found that it was plug and play.
11. $f(x)=4 x^{2}-7$ on $[1, b]$
37. Use a graph to estimate the local extrema and inflection points of each function, and to estimate the intervals on which the function is increasing, decreasing, concave up, and concave down.
$f(x)=x^{4}-4 x^{3}+5$

\mathbf{x}	$\mathrm{f}(\mathrm{x})$
-2	21
$\mathbf{- 1}$	8
$\mathbf{0}$	5
$\mathbf{1}$	-2
$\mathbf{2}$	-11
$\mathbf{3}$	-22
$\mathbf{4}$	5

The function is increasing at $(-\infty, 3) u(3, \infty)$. The minimum of the function is 3 . The function is concave down around $(0,2)$ and concave up from $(2, \infty) \operatorname{and}(-\infty, 0)$

Reflection: This question was difficult for me. I have never seen any questions like this before. It did not make sense until I was able to look in up in
the answer packet. One way I can improve on solving questions like this in the future would be to use more x values to get a better idea what the graph looks like. I can also use services like Mathmatica.

